Inhalt des Dokuments
Dr.-Ing. Zizung Yoon
Wissenschaftlicher Mitarbeiter
Raum: F 143
Telefon: +49 30 314-24438
Email: Anfrage
[1]
Forschung
- Verteilte Satellitensysteme, Satellitenkommunikation, Internet der Dinge (IoT), Dynamik und Regelung
Aufgaben
- Projektleitung Kleinsatelliten
- Vorlesung in Lageregelung von Raumfahrzeugen [2] (bis 2013), Spacecraft Dynamics and Control, Fundamentals of Space Technology
- Programm Manager für internationalen Studiengang "Master of Space Engineering" [3]
Projekte
- Projektleitung IoL-NET
- Projektleitung S-Net [4]: S-Band Netzwerk für kooperierende Satelliten
- SLink [5]: S-Band Transceiver zur Intersatelliten-Kommunikation von Nanosatelliten
- TET-1 [6]: Entwicklung, Test und Verifikation eines Lageregelungssystems für den Kleinsatelliten DLR TET-1
- WieMod [7]: Wieder verwendbare Modelle für die virtuelle wissensbasierte Produktentwicklung
Ausbildung
2012 M.Sc. in Wissenschaftsmarketing, TU Berlin
2011 Dr. -Ing. (Ph.D.) in Luft- und Raumfahrttechnik, TU Berlin
2006 Dipl. -Ing. in Luft- und Raumfahrttechnik, TU Berlin
Beruflicher Werdegang
Seit 2010 Wissenschaftlicher Mitarbeiter im FG Raumfahrttechnik TU Berlin
2006-2010 Mitarbeit im Projekt TET-1 [8] und WieMod [9]
bei Astro- und
Feinwerktechnik
Adlershof GmbH
2006 Space System Research Lab. Korea Aerospace Univ. (Praktikant)
Zitatschlüssel | Binder.2017.IAA.ADCS |
---|---|
Autor | Binder, Matthias; Yoon, Zizung; Briess, Klaus |
Jahr | 2017 |
Ort | Berlin |
Journal | 11th IAA Symposium on Small Satellites for Earth Observation |
Zusammenfassung | Due to the ongoing miniaturization within spaceborn technology, more complex payloads demanding for precise attitude information will be used on small, especially nanosatellite and picosatellite platforms. Since payload miniaturization is mainly driven by overall mission cost reduction, the corresponding satellite bus development must be a basic part of this design philosophy. Using low cost COTS sensor technology for space application can be risky due to quality and environmental specification issues, but controllable by testing and redundancy usage. COTS- and especially MEMS- sensor technology enables engineers to develop accurate and highly available low cost attitude determination systems for small satellite applications. By accommodating these low-cost sensors into arrays, broad synergy effects can be achieved: sensor availability and accuracy will be improved, whereas hardware cost still can be kept low. Another benefit is scalability. The sensor count can be easily adopted to different mission needs. This involves instant in-mission scaling as well as mission-to-mission scaling. This sensor concept will be demonstrated and verified on the nanosatellites of the S-NET mission. S-NET is a constellation of four nanosatellites demonstrating S-band inter-satellite communication and will verify communication protocols capable of handling a variety of network topologies. The attitude determination of S-NET nanosatellites is based on two magnetometer arrays, two sun sensor arrays and two gyroscope arrays. Each sensor array is processed by a dedicated array driver that will expose all obtained sensor measurements as one single sensor to the subsequent attitude determination processes aboard the satellite. Software algorithms were implemented to overcome different scenarios of sensor array failures and measurement distortion. These algorithms provide an additional virtual redundancy to the attitude determination of the S-NET satellites. All satellites are equipped with a unique pattern of retro reflectors for high precision laser ranging this will help to verify attitude determination calculated by onboard algorithms. In this paper an overview of the sensor array based attitude determination of the S-NET satellites is presented. The redundancy concept and the according software redundancy management is explained. Focus is given to the sensor fusion paths derived by combination of sensor arrays and software implemented virtual redundancy mentioned above. |
Zurück [11]
Kommissarische Fachgebietsleitung
Prof. Dr.-Ing. Dieter PeitschTel. +49 30 314-22878
Raum F 007
E-Mail-Anfrage [13]
Postanschrift
Institut für Luft- und RaumfahrtSekr. F6
Marchstraße 12 - 14
10587 Berlin
nfrage/parameter/de/font3/id/150643/?no_cache=1&ask
_mail=YAIsWwAFIk4gElpdkS3ogPibNY%2Bd%2FKFh9KdSGf9C%2BSs
%3D&ask_name=ZIZUNG%20YOON
dium_und_lehre/lehrveranstaltungen/lageregelung_von_rau
mfahrzeugen/
schung/aktuelle_projekte/s-net/
-communication-system-for-constellations-of-pico-satell
ites
/8653_read-11878/
/8624_read-15091/
/8653_read-11878/
/8624_read-15091/
ber_uns/mitarbeiterinnen/dr_ing_zizung_yoon/parameter/d
e/font3/?no_cache=1&tx_sibibtex_pi1%5Bdownload_bibt
ex_uid%5D=4652954&tx_sibibtex_pi1%5Bcontentelement%
5D=tt_content%3A612311
ber_uns/mitarbeiterinnen/dr_ing_zizung_yoon/parameter/d
e/font3/
anfrage/parameter/de/font3/id/150643/?no_cache=1&as
k_mail=YAIsWwAF7Jl9YQ%2BZT7R%2BK4tQMgJ8BF8HdRSQSFIqnnhG
t8rPb0o6Pg%3D%3D&ask_name=Prof.%20Dr.-Ing.%20Dieter
%20Peitsch