direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Dipl.-Ing. Sascha Weiß

Scientific assistant

Room: F 517
Phone: +49 30 314-28552


  • Research
  • Supervision of theses


  • Project Management NanoFF – Nanosatellites in Formation Flight
  • Project Management BEESAT-4 – Berlin Experimental and Educational Satellite


  • 2012: Dipl.-Ing. Satellite Engineering, TU Berlin


  • Since 2018: Scientific assistant in project NanoFF, TU Berlin
  • 2013-2018: Scientific assistant in project BEESAT-4, TU Berlin
  • 2009-2012: Student assistant at ILR, TU Berlin
  • 2007-2009: Student assistant at Chair of Thermodynamics, TU Berlin

Scientific Publications

TU Berlin Satellite Programmatics and Multi-Ground Station Concept
Citation key vonderoheTUBerlinSatellite2019
Author Martin von der Ohe, Sascha Weiß, Sascha Kapitola, Livio Gratton
Title of Book Proceedings of the 2nd IAA Latin American Symposium on Small Satellites
Year 2019
Address Buenos Aires, Argentina
Abstract With the launch of BEESAT-9...-13 Technische Universität Berlin (TU Berlin) has successfully launched and operated 21 satellites. Mission objectives include technology demonstration, communications experiments and education. In 2019, 12 of these satellites are still operated on a daily basis and seven more satellites are to be launched before 2022. The main communication link for TT\&C is in the amateur-satellite UHF band, which comes with both advantages and disadvantages. The main advantage is that the UHF amateur equipment is comparatively cheap, easy to install and handle and can be deployed even under harsh environmental conditions. The disadvantage is that data rates are low and amateur-satellite bands require compliance with amateur rules. For payload data, S band transmissions in the space-research bands are used. While these bands provide higher data rates, the ground station setup is more complex and more difficult to set up in a remote area. Besides the technical parameters of the ground stations, operational requirements have to be taken into account. Most TU Berlin satellites are developed by different project teams, having concurrent operation needs and not always a common operations system. This necessitates thorough planning of ground station availability and mission operations. When capacity limits of single ground station solutions are reached, a ground station network for satellite operations becomes necessary. TU Berlin has pursued an approach of successively building up a distributed network of ground stations with international partners throughout the world. This paper provides an overview of TU Berlin's satellite missions and their ground station network. Besides the ``home base'' on the rooftop of the institute of aeronautics and astronautics at TU Berlin, stations in Backnang (Germany), Longyearbyen (Svalbard, Norway), Buenos Aires (Argentina) and San Martin Base (Antarctica) exist. These stations are either built and operated independently or in close collaboration with partners, e.g. Instituto Colomb of UNSAM in Buenos Aires. Additionally, transmissions that are down- linked in amateur-satellite bands are collected via the SatNOGS network. The paper will conclude with an outlook of how TU Berlin plans to further optimize the ground station network.
Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe